When we talk about Artificial Intelligence, do star Large Language Models (LLMs) like DeepSeek pop into our minds? They can not only engage in intelligent chat and write articles automatically, but even help us program efficiently. And when it comes to industrial production, we often focus on quality management tools like control charts and process capability analysis. General-purpose AI models (represented by large models such as DeepSeek, ChatGPT, and Gemini) represent the most cutting-edge intelligent technology of the information age, while Statistical Process Control (SPC) embodies the spirit of continuous improvement in product quality from the industrial age. Many people wonder how LLMs will replace SPC. Today, let’s discuss what general-purpose AI models (especially large models like DeepSeek) and SPC are all about. More importantly, let's explore whether we can leverage the “superpowers” of LLMs like DeepSeek to give traditional SPC analysis a major upgrade and usher in a new era of intelligent quality management!
First, we need to clarify the essence and respective focus of general-purpose AI models and SPC. Although both are important tools and methodologies, they have significant differences in application areas and core functions. Understanding their essential differences and possible connections will be very helpful for us to better utilize them in practical work.
General-purpose AI Models (Represented by DeepSeek, etc.): Powerful pre-trained language models, with natural language processing (NLP) at their core and particularly outstanding code generation capabilities.
General-purpose AI models might be more familiarly known by their “stage name” “GPT (Generative Pre-trained Transformer)”. Now, more representative examples might include a series of emerging powerful models like DeepSeek. These models are all “leaders” among pre-trained language models. General-purpose AI models are powerful pre-trained language models. Their core advantage lies in their expertise in understanding and generating natural language text – simply put, they are exceptionally good at “talking”. This makes them incredibly capable when handling various NLP tasks, demonstrating outstanding abilities in areas such as:
SPC: The cornerstone of quality management, SPC is a quality management technique that utilizes statistical principles and methods to monitor and control production process variation, and it also needs to undergo "intelligent upgrades" by embracing large models like DeepSeek.
SPC, or Statistical Process Control, remains the “cornerstone” of quality management. It is a quality management technique that utilizes statistical principles and methods to monitor and control production process variation in order to ensure stable product quality and continuous improvement. Its core objective remains to “keep a close eye” on production process variation, ensuring our product quality is consistently reliable and can be continuously improved. The core methods of SPC include control charts, process capability analysis, and various statistical analysis tools. SPC's "combination punch" mainly consists of the following techniques:
The key to SPC lies in the collection, analysis, and interpretation of production process data, and taking corresponding control and improvement measures based on the analysis results. The key to SPC also lies in continuously collecting production process data, then conducting systematic analysis and professional interpretation, and taking corresponding control and improvement measures based on the analysis results. Simply put, it's about using data to speak and using statistical methods to guide quality improvement. However, in today's era of data explosion and increasingly complex production environments, traditional SPC analysis methods also face some "minor challenges":
Large Models (especially DeepSeek etc.) + SPC = "New Playbook" for Intelligent Quality Management? DeepSeek and other large models may become the key to intelligent upgrades of SPC.
Therefore, it's not about simply throwing a set of detection data at a large model and expecting it to automatically generate control charts and calculate process capability. Instead, it's about applying SPC tools, feeding the results data, such as control charts (out-of-control points) and process capability indices, into large models, and letting the models help us write SPC analysis reports, analyze root causes, and provide recommendations.
Large models like DeepSeek can become a “super plug-in” for SPC, enhancing the efficiency, depth, and intelligence level of SPC analysis in various aspects. How do large models like DeepSeek "buff up" SPC analysis?
Root Cause Analysis and Problem Diagnosis:
Predictive Quality Management and Preventive Measures:
A More "Human-friendly" Human-Machine Collaborative SPC Analysis Platform:
Looking ahead, the "marriage" of large models and SPC is definitely a major trend in intelligent quality management. The key to SPC lies in the collection, analysis, and interpretation of production process data, and taking corresponding control and improvement measures based on the analysis results. As large model technology becomes increasingly mature and widespread, we have reason to believe that large models will play an increasingly important role in SPC analysis, driving quality management from traditional models towards an intelligent, preventive, and efficient “fast lane”, ultimately helping companies achieve higher levels of quality excellence.